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COURSE INTRODUCTION 

 

A subfield of mathematics known as "real analysis" studies the characteristics and patterns of 

real numbers, real-valued functions, and real number sequences and series. For the purpose of 

comprehending ideas like boundaries, continuity, differentiation, and integration, this course 

offers a demanding foundation. 

 

The course is divided into 12 units. Each unit is divided into sub topics. The units provide 

students with a comprehensive understanding of the real number system and its characteristics. 

They also examine continuity, differentiability, and integrability concepts in a rigorous 

mathematical framework, analyze sequences and series of real numbers and functions, and apply 

these concepts to solve theoretical and practical problems. 

Each unit starts with a statement of objectives that outlines the goals.  

 

Course Outcomes: 

On  the completion of the course, a student will be able to: 

1. Recall the properties of the real line and learn to define sequence in terms of functions 

from to a subset. 

2. Explain bounded, convergent, divergent, Cauchy and monotonic sequences. 

3. Apply to calculate their limit superior, limit inferior, and the limit of a bounded sequence. 

4. Analyze various applications of the fundamental theorem of integral calculus. 

5. Evaluate uniform continuity, differentiation, integration and uniform convergence. 

6. Create the ratio, root, alternating series and limit comparison tests for convergence and 

absolute convergence of an infinite series of real numbers. 

Acknowledgements: 

 

The content we have utilized is solely educational in nature. The copyright proprietors of the 

materials reproduced in this book have been tracked down as much as possible. The editors 

apologize for any violation that may have happened, and they will be happy to rectify any such 

material in later versions of this book. 

 

 

 



UNIT-1
Introduction to Real Numbers

Learning Objectives:

 Understanding the Real Number System

 Properties of Real Numbers

 Applications of Real Numbers

 Supremum and Infimum

Structure:
1.1 Review of basic concepts of real numbers

1.2 Countable and uncountable sets

1.3 Real number system

1.4 Archimedean property

1.5 Supremum, infimum, and Completeness

1.6 Summary

1.7 Keywords

1.8 Self-Assessment questions

1.9 Case Study

1.10 References

1.1 Review of basic concepts of real numbers:
Real  numbers  form  the  backbone  of  mathematics,  serving  as  the  foundation  for  various

mathematical  disciplines,  including  calculus,  analysis,  and  algebra.  In  this  chapter,  we  will

revisit the fundamental concepts of real numbers, exploring their properties, classifications, and

significance in mathematical contexts.

Definition 1.1
Real numbers include all rational and irrational numbers and can be represented as points on the

real number line. They are denoted by the symbol ℝ.
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Properties of Real Numbers:
Real numbers possess several key properties that make them essential in mathematical analysis:

1. Closure: The sum, difference, and product of two real numbers are also real numbers.

2. Commutativity  and  Associativity: Addition  and  multiplication  of  real  numbers  are

commutative and associative.

3. Distributive Property: Multiplication distributes over addition for real numbers.

Ordering: Real numbers can be ordered such that for any two real numbers a and b, either a < b,

a = b, or a > b.

Density: Between any two real numbers, there exists an infinite number of other real numbers.

Classification of Real Numbers:
Real numbers can be classified into different categories based on their properties:

i. Natural Numbers (N): The set of positive integers, including 1, 2, 3,...

ii. Whole Numbers (W): The set of non-negative integers, including 0 and all positive integers.

iii. Integers (Z): The set of positive and negative whole numbers, including zero.

iv. Rational Numbers (Q): Numbers that can be expressed as a fraction of two integers, where

the denominator is not zero.

v. Irrational Numbers: Numbers that cannot be expressed as a fraction of two integers, such as

√2 and π.

1.2 Countable and uncountable sets:
In the realm of set theory, understanding the distinction between countable and uncountable sets

is  crucial.  These  concepts  have  profound  implications  in  various  branches  of  mathematics,

including real analysis, topology, and measure theory. Let's explore these concepts in detail.

Countable Sets:
A set is said to be countable if its elements can be put into one-to-one correspondence with the

natural numbers (the set of positive integers). Formally, a set  S is countable if there exists a

bijection (a one-to-one and onto function) between S and N.
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Finite Sets: Finite sets are trivially countable since their elements can be enumerated in a finite

sequence.

Countably Infinite Sets: Sets that are infinite but still have a one-to-one correspondence with N

are countably infinite. Examples include the set of all integers Z, the set of even integers, and the

set of odd integers.

Uncountable Sets:
A set is considered uncountable if its elements cannot be put into one-to-one correspondence

with  the  natural  numbers.  In  other  words,  there  is  no  way  to  list  all  the  elements  of  an

uncountable set in a sequence.

Real Numbers: The set of real numbers R is a classic example of an uncountable set. This was

famously proven by Georg Cantor using his diagonal argument.

Power set: The power set of any set (the set of all  its subsets) is always uncountable. This

follows from Cantor's theorem.

Cardinality:
Cardinality is a measure of the "size" of a set, indicating the number of elements it contains.

Countable sets have cardinality either finite or countably infinite, while uncountable sets have

cardinality strictly greater than that of the natural numbers.

Countable Sets: Countable sets have cardinality ℵ0, also known as aleph-null.

Uncountable Sets: Uncountable sets have cardinality greater than  ℵ0,  . The cardinality of the

real numbers R is denoted by c, and it is strictly greater than ℵ0.

1.3 Real number system:
The real number system is an extensive framework used in mathematics to describe and analyze

numbers that can be found on the number line. It  includes a variety of subsets with distinct

properties and applications. Here's a comprehensive overview of the real number system:

Components of the Real Number System:
1. Natural Numbers (N):
The set of positive integers used for counting.Examples: 1,2,3,…

Properties: Closed under addition and multiplication, but not under subtraction or division.
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2. Whole Numbers (W):
The set of natural numbers including zero.Examples: 0,1,2,3,…

Properties: Closed under addition and multiplication.

3. Integers (Z):
The set of whole numbers and their negatives.Examples: …,−3,−2,−1,0,1,2,3,……

Properties: Closed under addition, subtraction, and multiplication, but not under division.

4. Rational Numbers (Q):

Numbers that can be expressed as a fraction ab , where a and b are integers and b≠0.Examples:

1/2,−4/3,5(since 55 can be written as 5/1)

Properties: Dense in the real number line (between any two rational numbers, there is another

rational number).

5. Irrational Numbers:

Numbers  that  cannot  be  expressed  as  a  simple  fraction.  Their  decimal  expansions  are  non-

terminating and non-repeating.Examples: π,e,√2
Properties: Not closed under addition, subtraction, multiplication, or division (e.g., π+(−π )=0

which is rational).

Subsets of Real Numbers:
1. Positive and Negative Numbers:

Positive real numbers (R+¿ ¿): All real numbers greater than zero.

Negative real numbers (R−¿ ¿): All real numbers less than zero.

2. Non-Negative and Non-Positive Numbers:

Non-negative real numbers: All positive numbers including zero.

<---|---|---|---|---|---|---|---|---|---|---|---|--->
... -3  -2  -1   0   1   2   3   4   5   6   7   ...
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Figure 1.1 Real Number Line
Figure 1.1 showing the real  line number with  −∞ to  ∞ which includes the all  rational and

irrational numbers both. 

1.4 Archimedean Property:
Definition 1. 2
The Archimedean property is a fundamental property of the real numbers that can be stated as

follows:

For any two real numbers x and y withx>0, there exists a natural number n such that nx> y.

In other words, no matter how large y is or how small x is, we can always find a natural number

n such that the product  nx exceeds  y. This property ensures that the real numbers do not have

infinitely large or infinitely small values relative to the natural numbers.

Implications and Examples:
1. Unbounded of Natural Numbers:
The Archimedean property implies that the set of natural numbers N is not bounded above in the

real numbers R. For any real number y, no matter how large, there exists a natural number n such

that n>y.

Example:  Given  y=1000,  there  exists  a  natural  number  n (specifically,  n=1001)  such  that

n>1000.

2. Approximation of Real Numbers by Natural Numbers:
For any positive real number x, the Archimedean property guarantees that we can find a natural

number  n such that  1/n<x. This is useful in analysis for approximations and in constructing

sequences that converge to a given limit.

Example: Given  x=0.001,  there exists  a  natural number  n (specifically,  n=1000)  such that

1/n<0.001.

5



3. Denseness of Rational Numbers:
A corollary  of  the  Archimedean property is  that  the  rational  numbers  are  dense  in  the real

numbers.  This  means  that  between  any  two  real  numbers,  there  is  a  rational  number.  The

property helps to construct rational approximations to any real number.

Example: For any real numbers a and b with a<¿b, there exists a rational number q such that

a<q<¿b.

Proof of the Archimedean Property:
Here is a simple proof of the Archimedean property:

Assume for contradiction that the Archimedean property is false. 

Then there exist positive real numbers x and y such that for all natural numbers n, nx ≤ y .

Consider the sequence {xy}. 

According to our assumption, for all n∈N , n≤ xy. 

This implies that xy is an upper bound for the natural numbers.

However, the set of natural numbers N has no upper bound in the real numbers (by definition

1.2). 

This contradiction implies that our initial assumption must be false, and thus the Archimedean

property holds.

1.5 Supremum, Infimum, and Completeness:
Supremum (Least Upper Bound):
The supremum (sup) of a set S of real numbers is the smallest real number that is greater than or

equal to every element of S.

If S is bounded above, the supremum exists and is unique.

Notation: If S is a set, then supS denotes the supremum of S.

Example: Consider the set S={x∈ R∣0≤x<1 }. The supremum of S is 1, since 1 is the smallest

number that is greater than or equal to every element of S.

Infimum (Greatest Lower Bound):
The infimum (inf) of a set S of real numbers is the largest real number that is less than or equal to

every element of S.
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If S is bounded below, the infimum exists and is unique.

Notation: If S is a set, then infS denotes the infimum of S.

Example: Consider the set  S={x∈ R∣0<x≤1 }. The infimum of  S is 0, since 0 is the largest

number that is less than or equal to every element of S.

Properties of Supremum and Infimum:
1. Existence: If a set S⊂R is non-empty and bounded above, then supS exists. Similarly, if S is

non-empty and bounded below, then infS exists.

2. Uniqueness: The supremum and infimum of a set, if they exist, are unique.

3. Order: For any non-empty set S that is bounded above, supS is such that:

supS≥ s for all s∈S

For any ϵ>0, there exists an s∈S such that sup supS−ϵ<s ≤ supS

4. Duality: The infimum of a set S is the negative of the supremum of the set −S, and vice versa.

IfT={−s∣ s∈S }, then infS=−supT  and sup supS=−infT .

Completeness Property:
The completeness property of the real numbers, also known as the Least Upper Bound Property,

states that every non-empty subset of R that is bounded above has a supremum in R.

If S⊂R is non-empty and bounded above, then supS∈R.

Conversely, if S⊂R is non-empty and bounded below, then infS∈R.

Importance in Analysis:
1. Existence of Limits:
The completeness  property  is  crucial  for  the  existence  of  limits.  It  guarantees  that  bounded

monotone sequences converge.

Example: If {an} is a sequence that is bounded and increasing, then limn→∞an={an∣n∈N }.

2. Interchange of Supremum and Limit:

For a bounded sequence  {an},lim ¿n→∞an=infsup {ak ∣k ≥n } ensures the interchangeability of

limit superior and supremum.

3. Real Analysis:
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Many theorems in  real  analysis  rely  on  the  completeness  of  R.  For  example,  the  Bolzano-

Weierstrass theorem states that every bounded sequence in R has a convergent subsequence.

4. Topology:
The  completeness  of  R  underpins  the  structure  of  metric  spaces,  particularly  in  defining

completeness for these spaces.

Examples and Exercises:

Example: Find the supremum and infimum of the set S={x∈ R∣2≤ x≤5 }.

Solution: The supremum of S is 5, and the infimum of S is 2.

1.6 Summary:
By  the  end  of  an  "Introduction  to  Real  Numbers"  course,  students  should  have  a  solid

understanding of the real number system, be able to perform and understand various operations

with real numbers, and apply these concepts to solve both abstract mathematical problems and

practical  real-world  scenarios.  These  learning  objectives  ensure  that  students  build  a  strong

foundation in real numbers, which is essential for further studies in mathematics and related

disciplines.

1.7 Keywords:

 Real Number System

 Arithmetic, Order, Algebric properties

 Decimals and factors

 Supremum and Infimum

1.8 Self-Assessment questions:
1. Define a real number.

2. What is the difference between rational and irrational numbers?

3. Provide three examples of irrational numbers.

4. Explain the closure property of real numbers.

5. What is the associative property? Give an example using real numbers.
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6. State the distributive property and provide an example.

7. Simplify the expression: 5√3 + 2√3.

8. Evaluate the expression: (2/3) / (4/5).

9. Plot the following numbers on a number line: -2, 0, 3.5, √2.

1.9 Case Study:
1. How did the discovery of irrational numbers influence the development of mathematics?

2. In what ways do real numbers appear in everyday life? Provide examples.

3. Discuss  the  importance  of  the  properties  of  real  numbers  in  ensuring  the  consistency of

mathematical operations.

4. Create a real-world problem that involves real numbers and solve it, explaining each step.

1.10 References:

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson.

 Trench, W. F. (2013). Introduction to Real Analysis. United Kingdom: Prentice Hall/Pearson

Education.
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UNIT - 2
Continuity and Uniform Continuity

Learning Objectives:

 Understand the Definition of Continuity at a Point

 Recognize Continuous Functions

 Understand and use of Weierstrass’s theorem

 Understand the topology and Metric spaces

Structure:
2.1 Understanding continuity

2.2 Uniform continuity

2.3 Metric spaces and their topology

2.4 Weierstrass’s theorem

2.5 Continuity of functions in metric spaces

2.6 Summary

2.7 Keywords

2.8 Self-Assessment questions

2.9 Case Study

2.10 References
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2.1 Understanding Continuity:
Definition: A function f :D⊆R→R is continuous at a point c in its domain if, for every ϵ>0,

there exists a δ>0 such that ∣ f (x)−f (c)∣<ϵ  whenever ∣ x−c∣<δ.

Key Points:

 A function is continuous if it doesn't have any breaks, jumps, or holes in its graph.

 Continuity at  a point means that  small  changes in the input lead to small  changes in the

output.

 Continuous functions preserve limits: limx→c f (x)=f (c).

2.2 Uniform Continuity:
Definition 2.1
A function  f : A→R defined on a  subset  A of  the  real  numbers  R is  said  to  be  uniformly

continuous if for every ϵ>0, there exists a δ>0 such that for all x , y∈ A,

∣ x− y∣<δ⟹∣ f (x )−f ( y)∣<ϵ .

Key Points:

 Uniform continuity is a stronger condition than continuity. It requires that the choice of  δ

works uniformly for all points in the domain.

 While  continuity  focuses  on  the  behaviour  around  individual  points,  uniform  continuity

considers the behaviour over the entire domain simultaneously.

 Uniformly continuous functions can "control" oscillations and ensure that the function doesn't

"vary too much" across the entire domain.

Differences between Continuity and Uniform Continuity:
1. Existence of δ:

For continuity, δ may depend on both ϵ and c.

For uniform continuity, δ must work for all points simultaneously and doesn't depend on any

particular point.

2. Local vs. Global:
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Continuity  focuses  on  the  behaviour  of  a  function  at  individual  points,  considering  local

neighbourhoods.

Uniform continuity considers the behaviour of a function across the entire domain, providing

a global control on its variations.

3. Preservation of Cauchy Sequences:
Uniform continuity preserves Cauchy sequences. If a function is uniformly continuous on a

set, then it maps Cauchy sequences to Cauchy sequences.

Example:

Consider the function f (x)=1/x defined on the interval (0 ,∞).

 f (x) is continuous but not uniformly continuous on (0 ,∞).

 While f (x) is continuous at each point in its domain, it exhibits unbounded oscillations as x

approaches 0,  making it  impossible to find a single  δ that works uniformly for the entire

interval.

2.3 Metric spaces and their topology:
Definition 2.2

A metric space is a pair (X ,d ) where:

 X  is a set.

 d :X ×X→R is a metric on X , satisfying the following properties for all x , y , z∈ X :

1. Non-negativity: d (x , y)≥0and d (x , y)=0if and only if x= y .

2. Symmetry: d (x , y)=d ( y , x ).

3. Triangle Inequality: d (x , z )≤d (x , y)+d ( y , z).

Examples:
1. Euclidean Space:

 Set: Rn.

 Metric: The Euclidean distance

d ( x , y )=√(x1− y1)
2+(x2− y2)

2+…+(xn− yn)
2

for x=x1 , x2 ,… xnand y= y1 , y2 ,… yn
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2. Discrete Metric Space:

 Set: Any set X .

 Metric: 

Topology of Metric Spaces:
Open Sets:

 A set  U in a metric space  X is open if, for every point  x in  U, there exists a positive real

number r such that the open ball B(x ,r ) is contained in U.

 Open sets are the basic building blocks of the topology of a metric space.

Closed Sets:
 A set F in a metric space X is closed if its complement X ∖ F is open.

 Closed sets contain all their limit points.

Interior, Boundary, and Closure:

 The interior of a set A in X, denoted by ∫(A) , is the largest open set contained in A.

 The boundary of A, denoted by ∂ A, is the set of points in X that are neither in ∫(A) nor in the

complement of A.

 The closure of A, denoted byA, is the union of A and its boundary.

Convergence:
A function  f : A→R defined on a  subset  A of  the  real  numbers  R is  said  to  be  uniformly

continuous if for every ϵ>0, there exists a δ>0such that for all x , y∈ A,

∣ x− y∣<δ⟹∣ f (x )−f ( y)∣<ϵ .

Completeness:
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 A metric space X is complete if every Cauchy sequence in X converges to a limit in X.

 Completeness is a key property of metric spaces and is equivalent to the convergence of every

Cauchy sequence.

Importance in Analysis:
1. Generalization of Euclidean Spaces:

Metric  spaces  provide  a  general  framework  that  extends  the  notion  of  distance  and

convergence beyond Euclidean spaces.

2. Topology and Continuity:
The topology induced by a metric space plays a crucial role in defining continuity, open sets,

and closed sets, providing a foundation for topological concepts.

3. Convergence and Completeness:
Understanding convergence and completeness in metric spaces is fundamental for analyzing

the behavior of sequences and series, as well as for proving the existence and uniqueness of

solutions to differential equations.

Example:

Consider the metric space  (R ,d ), whered (x , y)=∣ x− y∣ is the standard Euclidean distance

function.

 The open interval (a ,b) in R is an open set in this metric space.

 The set [a ,b] is closed, as its complement R∖ [a ,b] is open.

 The sequence {1 /n } converges to 0 in (R ,d ), demonstrating convergence in this metric space.

2.4 Weierstrass’s theorem:
Weierstrass's Theorem Statement:  
Letf  be a continuous function defined on a closed interval [a ,b] . Then for everyϵ>0, there exists

a polynomial P(x ) such that

¿x∈[a , b]∣ f (x )−P(x )∣<ϵ .

Proof
Step 1: Existence of Supremum and Infimum
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Since f is continuous on the closed interval [a,b], it is bounded on this interval. By the Extreme

Value Theorem, f achieves its supremum and infimum on [a,b]. Let M be the supremum and m

be the infimumof f on [a,b].

Step 2: Attainment of Maximum

We aim to show that there exists a point  c in [a,b] such that  f (c )=M , the supremum of  f on

[a,b].

By the definition of supremum, for every positive integer n, there exists a point xn in [a,b] such

that M−1
n
<f (xn)≤M .

Science  [a,  b]  is  a  closed  and  bounded  interval,  by  the  Bolzano-Weierstrass  theorem,   the

sequence {xn} has a convergent subsequence {xnk } that converges to some point in [a, b].

Since f is continuous, we have:

lim ¿k→∞ f (xnk
)=f (c)¿

By the squeeze theorem:

lim ¿k→∞M− 1
nk

¿≤ f (c )≤ lim ¿k→∞M ¿

M≤ f ( c )≤ M .

Thus, f (c )=M , and f attains its maximum at c on [a,b].

Step 3: Attainment of Minimum

Similarly, we aim to show that there exists a point d in [a ,b]such that f (d )=m, the infimum of f

on [a ,b].

Using a similar argument as in Step 2, we can show that there exists a point d in [a ,b]such that

f(d)=m, and thus f attains its minimum at d on[a ,b].

Conclusion:

Since f attains its maximum at c and its minimum at d on [a ,b], Weierstrass's theorem is proved.

2.5 Continuity of functions in metric spaces:
In the context of metric spaces, the notion of continuity for functions is defined analogously to

that in real analysis. Let (X ,d X) and (Y ,dY ) be metric spaces, and let f : X→Y  be a function.

Definition 2.3 
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Let (X ,d X) and (Y ,dY )be metric spaces. A function f : X→Y  is said to be continuous at a point

x0∈ X  if for every ϵ>0, there exists a δ>0such that for all x∈ X ,

d X (x , x0)<δ⟹dY ( f (x ), f (x0))<ϵ .

Key Points:

 Epsilon-Delta Definition: The definition of continuity in metric spaces mirrors that of real

analysis but replaces the absolute value with the metric distance function dY in the codomain.

 Intuition: A function f is continuous if small changes in the input x result in small changes in

the output f(x), as measured by the metric distance dY.

 Sequential  Definition: Alternatively,  f is  continuous at  x0 if,  for every sequence {xn}in  X

converging to x0, the sequence {f(xn)} converges to f(x0) in Y.

 Composition of Continuous Functions: If  f : : X→Y  and  g :Y→Z are continuous functions

between metric spaces, then their composition g∘ f : X→Z is also continuous.

 Continuity and Open Sets: A function  f is continuous if and only if the preimage of every

open set in Y is an open set in X.

Importance in Analysis:
1. Topology:  Continuity is  a  fundamental  concept  in topology,  as it  defines the relationship

between the topologies of the domain and codomain of a function.

2. Convergence:  Continuous  functions  preserve  convergence,  allowing  for  the  analysis  of

sequences and series in metric spaces.

3. Applications:  Continuity  plays  a  crucial  role  in  various  fields  such  as  optimization,

differential  equations,  and  dynamical  systems,  where  understanding  the  behaviour  of

functions is essential.

Example:

Consider the function f :R→R defined by f(x)=2x+1.

 This function is continuous everywhere on R with respect to the standard Euclidean metric.

 Given  any  ϵ>0,  if  we  choose  2δ=2 ϵ ,  then  for  any  x0 in  R,  if  ∣ x−x 0∣<δ ,  then  f

(x)−f (x0)∣=∣2 x+1−(2 x 0+1)∣=2∣ x−x0∣<2δ=ϵ .
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 Thus, f is continuous on R.

2.6 Summary:
Continuity  and uniform continuity  are  fundamental  concepts  in  mathematical  analysis  that

describe how functions behave with respect to small changes in their inputs. Continuity at a

point ensures the function's output changes smoothly as the input changes. Uniform continuity

is  a  stronger  condition  that  requires  this  smooth  change to  be  consistent  across  the  entire

domain. These concepts are essential for understanding more advanced topics in calculus and

real analysis, including integration, differentiation, and the behavior of sequences and series.

2.7 Keywords:
 Continuous Functions

 Uniform Continuity

 Weierstrass's Theorem

 Metric Space

 Euclidean space

 Subsequence

2.8 Self-Assessment questions:
1. Provide an example of a metric space that is not Euclidean space.

2. Provide an example of a metric space that is not Euclidean space.

3. Given a  sequence  (xn)  in  a  metric  space  (X,d)  that  converges  to  x∈X, prove that  every

subsequence of (xn) also converges to x.

4. Prove that a function is continuous if and only if the preimage of every open set is open.

5. Give an example of a metric space that is not complete.

2.9 Case Study:

Consider the set of all continuous functions on the interval [0,1], denoted as C ([0,1]). We define

a metric ddd on this space using the supremum norm:

d ( f , g)=∥ f −g∥∞=¿x∈[0,1]∣ f (x )−g(x ).

Here, f and g are elements of C ([0,1]).
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2.10 References:

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson.

 Trench, W. F. (2013). Introduction to Real Analysis. United Kingdom: Prentice Hall/Pearson

Education
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UNIT-3
Compactness and Connectedness

Learning Objectives:

 Understand the Definition of Compactness

 Explore Properties of Compact Sets

 Understand the Definition of Connectedness

 Explore Properties of Connected Sets

Structure:
3.1 Exploring compact sets

3.2 Connectedness in metric spaces

3.3 Discontinuities in functions

3.4 Monotonic functions

3.5 Summary

3.6 Keywords

3.7 Self-Assessment questions

3.8 Case Study

3.9 References
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3.1 Exploring compact sets:
In the realm of topology and analysis, understanding compact sets is pivotal due to their rich

properties and implications in various theorems. Let's delve into the concept of compact sets.

Definition 3.1
A set K in a metric space X is said to be compact if every open cover of K has a finite sub cover.

In other words, for any collection of open sets  {U α } such that  ⊆ ∪αUα, there exists a finite

subset {U α1 ,Uα 2 ,…,U α n
} such that K ⊆⋃i=1

n Uα i
.

Key Properties:
1. Closed  and  Bounded:  In  Euclidean  spaces,  compact  sets  are  closed  and  bounded.  This

property is known as the Heine-Borel theorem.

2. Finite Sub cover Property: This is the defining property of compact sets. No matter how finely

we cover a compact set with open sets, we can always extract a finite sub cover.

3. Compactness  Implies  Sequential  Compactness:  Every  sequence  in  a  compact  set  has  a

convergent subsequence that converges to a point in the set.

4. Continuous Image of Compact Sets: The image of a compact set under a continuous function

is compact. This property is known as the continuity theorem for compact sets.

5. Product of Compact Sets: The Cartesian product of finitely many compact sets is compact.

This property is known as the product theorem for compact sets.

Importance in Analysis:
1. Existence of Extrema: Compactness is crucial  for proving the existence of maximum and

minimum values of continuous functions defined on closed intervals.

2. Convergence: Compact sets facilitate the study of convergence in various contexts, such as

sequences, series, and functions.

3. Topology: Compact sets play a central role in topology, serving as a bridge between local and

global properties of spaces.

4. Functional Analysis: Compact sets are extensively used in functional analysis, particularly in

the study of operator theory, spectral theory, and Banach spaces.
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Example:
Consider the closed interval [0,1] in the real line R.

 This set is compact in R according to the Heine-Borel theorem.

 Any open cover of [0,1] can be reduced to a finite sub cover, demonstrating its compactness.

3.2Connectedness in metric spaces:

Connectedness  is  a  fundamental  concept  in  topology  that  characterizes  the  "wholeness"  or

"integrity" of a space.  In the context of metric spaces,  connectedness plays a crucial  role in

understanding the structure and behaviour of sets. Let's explore connectedness in metric spaces.

Definition 3.2
If there is no way to split a metric space X into two disjoint non-empty open sets, then the space

is said to be linked. The empty set and space X are the only subsets of X that are both open and

closed, according to formal definitions of connectedness.

Key Properties:
1. Path-connectedness : If a continuous function f:[0,1]→X exists such that f(0)=a and f(1)=b for

each pair of points a,b∈X, then a metric space X is path-connected.

2. Connected Sets: A subset A of a metric space X is connected if the subspace A is connected

with respect to the induced metric topology.

3. Intermediate  Value  Property:  Connectedness  is  closely  related  to  the  intermediate  value

property. If f : X→R is a continuous function defined on a connected metric space X, then f

takes on all intermediate values between any two given values in its range.

4. Union of Connected Sets: The union of a collection of connected sets that intersect pairwise at

least at one point is also connected.

Importance in Analysis:
1. Topological Characterization: Connectedness provides a fundamental topological property

that helps classify spaces into connected and disconnected ones.

2. Continuity and Path-connectedness: Connectedness is intimately linked with the continuity

of functions and the existence of paths between points in a space.
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3. Intermediate  Value  Theorem: The  intermediate  value  property,  a  consequence  of

connectedness,  underpins  many  results  in  real  analysis,  including  the  intermediate  value

theorem.

Example:
Consider the real line R with the standard Euclidean metric.

 R is a connected metric space. Any attempt to divide R into two disjoint non-empty open sets

would fail, as R is an unbroken continuum.

 Any interval (a,b) in R is also connected. This follows from the fact that any attempt to split

the interval into disjoint non-empty open sets would result in one of the sets being empty.

3.3Discontinuities in functions:
Discontinuities  in  functions  refer  to  points  where  the  function  fails  to  exhibit  continuity.

Understanding the nature of discontinuities is crucial in analysis as it provides insights into the

behaviour of functions and their limits. Let's explore the different types of discontinuities that

can occur in functions defined on metric spaces.

Types of Discontinuities:

1. Point  Discontinuity: A function  f : X→Y  has  a  point  discontinuity  at  a  point  x0 in  the

domain if f is not continuous at x0 but is continuous at all other points in the neighborhood of

x0 .

2. Jump Discontinuity: A function f:X→Y has a jump discontinuity at a point x0 in the domain

if the one-sided limitslim ¿x→x0
−¿ f (x)¿¿ and lim ¿x→x0

+¿ f (x)¿¿ exist but are not equal.

3. Removable Discontinuity: A function f : X→Y  has a removable discontinuity at a point x0

in the domain if the limitlim ¿x→x0
−¿ f (x)¿¿ exists, but f(x0) does not equal this limit.

4. Infinite Discontinuity: A function  f:X→Y has an infinite discontinuity at a point  x0 in the

domain if at least one of the one-sided limits lim ¿x→x0
−¿ f (x)¿¿ or lim ¿x→x0

+¿ f (x)¿¿is infinite.

5. Oscillatory Discontinuity: A function f : X→Y  has an oscillatory discontinuity at a point x0

in the domain if f oscillates infinitely near x0, making it impossible to assign a well-defined

limit.
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3.4Monotonic functions:
Monotonic functions are a class of functions that exhibit a consistent trend in their behavior: they

either  consistently  increase  or  consistently  decrease  over  their  entire  domain.  Understanding

monotonic functions is essential in analysis, optimization, and various other fields. Let's explore

them further.

Definition 3.3 
A function f : A→R defined on a set A⊆R is said to be:

1. Monotonically Increasing: If for all x , y∈ Awith x≤ y, we have f (x)≤ f ( y ).

2. Monotonically Decreasing: If for all x , y∈ Awith x≤ y, we have ff (x)≥ f ( y ).

Example:

 The identity function f (x)=x on R.

 The exponential function f(x)=ex on its entire domain.

 The negative identity function f (x)=−x on R.

 The reciprocal function f(x)=1/x on its domain (−∞,0).

3.5 Summary:
Understanding the properties and interplay between connected and compact sets is crucial for

many areas of mathematics, including analysis, topology, and geometry. They provide powerful

tools for analyzing the structure and behaviour of spaces and functions.

3.6 Keywords:
 Connected Sets

 Compact Sets

 Relation between Connected and Compact sets

3.7 Self-Assessment Questions:
1. Explain why the interval [0,1] in R is a connected set.

2. Explain why the interval [0,1] in R is a connected set.

3. Define a compact set in a metric space.
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4. Provide an example of a set that R is not compact.

5. State the theorem that every disconnected set in R is not compact.

3.8 Case Study:
The connectedness of [0,1] can be established using the Intermediate Value Theorem. Suppose

f : [0,1]→R is a continuous function. If there exist a ,b∈[0,1] such that f (a)<c< f (b) , then by

IVT   (Intermediate  Value  Theorem),  there  exists  x∈ [a ,b ] such  that  f (x)=¿c.  This

demonstrates that f([0,1])is connected for any continuous function f on [0,1].

3.9 References:

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson.

 Trench, W. F. (2013). Introduction to Real Analysis. United Kingdom: Prentice Hall/Pearson

Education
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UNIT - 4
Sequences and Series

Learning Objectives:

 Understand the Definition of a Sequence

 Convergence and Divergence of Sequence

 Understand the Cauchy sequences

 Absolute and conditional convergence

Structure:
4.1 Convergence of sequences

4.2 Cauchy sequences

4.3 Upper and Lower limits

4.4 Cauchy’s general Principle of convergence

4.5 Summary

4.6 Keywords

4.7 Self-Assessment questions

4.8 Case Study

4.9 References
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4.1 Convergence of sequences:
The convergence of sequences is a fundamental concept in analysis that describes the behaviour

of a sequence as its terms approach a specific limit. Understanding convergence is crucial in

various areas of mathematics,  including calculus, real analysis, and functional analysis. Let's

explore the convergence of sequences.

Definition 4.1

A sequence {xn} in a metric space X is said to converge to a limit  L if, for every positive real

number ϵ, there exists a positive integer N such that for all n≥ N , the distance between xn and L

is less than ϵ. Symbolically, this is expressed as:

 lim ¿n→∞¿xn=L

Key Concepts:
1. Limit: The limit L is the value that the terms of the sequence approach as n tends to infinity.

2. Convergence Criterion: A sequence converges if, for any arbitrarily small positive number ϵ,

there exists a point in the sequence beyond which all terms are within  ϵ distance from the

limit.

3. Divergence: If a sequence does not converge, it is said to diverge. Divergence can occur in

various forms, such as unboundedness, oscillation, or failure to approach any specific value.

4. Limit Notation: Convergence is often denoted using the limit notation lim ¿n→∞¿xn=L, where

L is the limit of the sequence.

Example:
This sequence converges to 0 as n tends to infinity, as for any ϵ>0, we can choose N such that

1/N<ϵ for all n≥ N .

4.2 Cauchy sequences:
Cauchy sequences are an important concept in real analysis and the theory of metric spaces.

They represent a specific type of sequence where the terms become arbitrarily close to each other

as the sequence progresses. Let's explore Cauchy sequences further.

Definition 4.2 
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A sequence {xn} in a metric space  X is called a Cauchy sequence if, for every positive real

number ϵ, there exists a positive integer N such that for all m,n≥N, the distance between xm and

xn is less than ϵ. Symbolically, this is expressed as:

for all ϵ>0 ,∃N ∈N  such that d (xm , xn)<ϵ  for all m ,n≥ N .

Example:

Consider the sequence {xn}={1n} in the real numbers.

 This sequence is a Cauchy sequence because for any ϵ>0, we can choose N such that 
1
m−
1
n
<ϵ

for all m ,n≥ N .

 Alternatively, consider the sequence {y n}={1+ 1
2n

}. This sequence is also a Cauchy sequence

because the terms approach 1 as n tends to infinity.

4.3 Upper and Lower limits:
Upper and lower limits, also known as the supremum and infimum, respectively, play a crucial

role in analyzing the behaviour of sequences and sets, particularly in real analysis and the theory

of metric spaces. Let's explore upper and lower limits further.

Upper Limit (Supremum):
Any real number that is smaller than or equal to every element in a set ‘S’ of real numbers is its

supremum, or upper bound. It's represented by sup(S). 

Formally:

sup(S)=smallest x such that x≥s for all s∈S

Lower Limit (Infimum):
For each set S of real numbers, the greatest real number less than or equal to all of S's elements is

its lower limit, also known as its infimum. It's represented by inf(S).

Formally:

inf(S)=largest x such that x≤s for all s∈S
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Example:

Consider the set S={1−1
n

∣ n∈N } of real numbers.

 The supremum of S is sup(S)=1 because 1 is the smallest real number greater than or equal to

all elements of S.

 The infimum of  S is inf(S)=0 because 0 is the largest real number less than or equal to all

elements of S.

4.4 Cauchy’s general Principle of convergence:
Cauchy's  General  Principle  of  Convergence,  also  known  simply  as  Cauchy's  Convergence

Criterion, is a fundamental concept in real analysis. It provides a criterion for determining when

a sequence converges based on the sequence itself, without reference to a specific limit. Let's

explore Cauchy's Convergence Criterion further.

Definition 4.3 

Cauchy's Convergence Criterion states that a sequence {xn} in a metric space X converges if and

only if, for every positive real number ϵ, there exists a positive integer N such that for all m,n≥N,

the distance between xmand xnis less than ϵ. Symbolically:

The sequence {xn} converges ⟺∀ ϵ>0 ,∃N ∈N  such that d(xm,xn)<ϵ for all m ,n≥ N

Example

Consider the sequence {xm}={1/n} in the real numbers.

This sequence satisfies Cauchy's Convergence Criterion because for any ϵ>0, we can choose N

such that 1/m-1/n<ϵ for all m,n≥N.

Squeeze Theorem (or Sandwich Theorem):

Theorem:

Let {an}, {bn}, and {cn} be sequences of real numbers. If there exists an integer Nsuch that for all
n ≥ N, an≤bn≤cn, and if limn→∞an= limn→∞cn=L then limn→∞bn= L.

Proof:
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By the definition of the limit, for every ϵ>0, there exists a positive integer N1such that for all

n≥N1 , ∣an−L∣<ϵ.

This means L−ϵ<an<L+ϵ.

Similarly, for every ϵ> 0, there exists a positive integer N2 such that for all n≥N2, ∣cn−L∣<ϵ.

 This means L−ϵ<cn<L+ϵ.

Let N0=max (N,N1,N2). For all n≥N0, 

L−ϵ<an≤bn≤cn<L+ϵ.

Therefore, for all n≥N0, 

L−ϵ<bn<L+ϵ,

Which implies ∣bn−L∣<ϵ.

4.5 Summary:
Understanding sequences and series, their properties, and convergence criteria are crucial for

advanced studies in mathematics and its applications in science and engineering.

4.6 Keywords:

 Sequences

 Series

 Convergence Tests

4.7 Self-Assessment Questions:
1. What does it mean for a sequence {an} to converge to a limit L? Provide the formal definition.

2. Determine whether the sequence {bn}=1/n converges or diverges. If it converges, find its limit.

3. Is every bounded sequence convergent? Provide a justification for your answer.

4. Given two convergent sequences {an} and {bn} with limits A and B respectively, what is the

limit of the sequence {cn} where cn=an+bn?

5. Use the Squeeze Theorem to determine the limit of the sequence {sinn/n}.
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4.8 Case Study:

A meteorologist is studying the average monthly temperatures over several years to predict

future climate patterns. They have collected temperature data Tn for a specific location over n

months. The goal is to determine if the average temperature sequence converges, which would

imply a stable long-term climate trend, or if it shows signs of divergence, indicating possible

climate change.

Question:
Suppose the temperature data for the past 60 months (5 years) is as follows:

T={30.5,31.0,30.7,30.9,31.2,30.8,30.6,31.0,31.1,30.9,…,31.0}

To analyze the trend, we construct the sequence of the average temperature {An}, where An is

the average temperature over the first n months.

An=
1
n∑i=1

n

T i

4.9 References:
 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson.

 Trench, W. F. (2013). Introduction  to  Real  Analysis. United  Kingdom: Prentice

Hall/Pearson Education
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UNIT - 5
Sequences and Series of Functions

Learning Objectives:

 Understand the Pointwise and uniform convergence

 Learn the Weierstrass’s M-test

 Understand the Abel’s test and Dirichlet’s test

 Understand the Power series

Structure:
5.1 Pointwise and uniform convergence

5.2 Weierstrass’s M-test

5.3 Abel’s test and Dirichlet’s test for uniform convergence

5.4 Uniform convergence and continuity

5.5 Uniform convergence and differentiation

5.6 Existence of a Power series

5.7 Summary

5.8 Keywords

5.9 Self-Assessment questions

5.10 Case Study

5.11 References
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5.1 Pointwise and uniform convergence:
Pointwise and uniform convergence are two important concepts in the study of sequences of

functions. They describe different modes of convergence for sequences of functions defined on a

common domain. Let's explore these concepts further.

Pointwise Convergence:
Given a sequence of functions fn:D→R, where D is the domain, the sequence {fn} is said to

converge pointwise to a function f:D→Rif for every xxx in the domain D, the sequence of real

numbers {fn(x)} converges to f(x) as n approaches infinity.

Example:
Consider the sequence of functions fn(x)=x/n defined on the interval  [0,1].  Let's  analyze the

pointwise convergence of this sequence.

Solution:For each fixed x in the interval [0,1], as n approaches infinity, x/n approaches 0. Hence,

the sequence converges pointwise to the zero function f(x) = 0 on the interval [0,1].

Uniform Convergence:
Given a sequence of functions fn:D→R, where D is the domain, the sequence {fn} is said to

converge uniformly to a function f:D→R if, for every ϵ>0, there exists an index N such that for

all n≥N and for all x in D, ∣fn(x)−f(x)∣<ϵ.

Example:
Consider the sequence of functions fn(x)=x/ndefined on the interval [0,  1].  Let's  analyze the

uniform convergence of this sequence.

Solution:  For each fixed x in the interval [0, 1], as n approaches infinity, x/n approaches 0.

Moreover,  the convergence is  uniform across the entire  interval  [0,  1].  Hence,  the sequence

converges uniformly to the zero function f(x) = 0 on the interval [0, 1].

5.2 Weierstrass’s M-test:

Weierstrass's M-test states that if there exists a sequence of positive constants M n such that for

each n and for all x in a set E, the absolute value of the n-th term of a series of functions f n(x) is

bounded by M n, and if the series ∑M n converges, then the series ∑f n(x)converges uniformly on

E.
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Mathematical Statement:

If there exists a sequence of positive constants M n such that for all n and x in a set E, and for all

n, we have ∣f n(x)∣≤M n, and if M nconverges, then ∑f n(x)converges uniformly on E.

5.3 Abel’s test and Dirichlet’s test for uniform convergence:
Abel's  Test  and  Dirichlet's  Test  are  two  convergence  tests  used  to  determine  the  uniform

convergence of series of functions. They are particularly useful when dealing with series that

involve products of functions or sequences with alternating signs. Let's explore their definitions.

Abel's Test:

Abel's Test states that if the series ∑
n=1

∞

f n(x )converges uniformly on a set E, and if the sequence

of partial sums SN ( x )=∑
n=1

N

f n(x) is uniformly bounded and uniformly convergent on E, then the

series ∑
n=1

∞

f n(x ) converges uniformly on E.

Dirichlet's Test:

Dirichlet's  Test  states that  if  the partial  sums  SN ( x )=∑
n=1

N

an( x) of  a  series  ∑
n=1

N

an(x)bn(x) are

uniformly bounded and the sequence  {bn(x)} converges uniformly to zero on a set  E, then the

series ∑
n=1

∞

an(x)bn(x) converges uniformly on E.

5.4 Uniform convergence and continuity:

A sequence of functions f n(x) converges uniformly to a function f(x) on a domain D if, for every

ϵ>0, there exists an N such that for all n≥N and for all x in D, the distance between f n(x)and f(x)

is less than ϵ.

5.5 Uniform convergence and differentiation:
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A sequence of functions f n(x) converges uniformly to a function f(x) on a domain D if, for every

ϵ>0, there exists an N such that for all n≥N and for all x in D, the distance between f n(x)and f(x)

is less than ϵ.

5.6 Existence of a Power series:
The existence of a power series refers to the ability to represent a function as an infinite sum of

terms involving powers of a variable. Let's explore how the concept of uniform convergence

relates to the existence of a power series.

Existence of a Power Series:

A power series is an infinite series of the form ∑
n=1

∞

anx
n, where an is a sequence of coefficients

and x is a variable. The power series represents a function f(x) defined by the series.

Conditions for Existence:
1. Convergence Radius: A power series may converge for certain values of x and diverge

for others. The convergence radius R is the distance from the center of the series at which

the series converges absolutely for all x within that distance.

2. Uniform Convergence: The existence of a power series requires uniform convergence of

the series within its  convergence radius.  Uniform convergence ensures that the series

represents the function uniformly on its convergence interval.

5.7 Summary:
Understanding the difference between pointwise and uniform convergence is crucial. Uniform

convergence  ensures  the  preservation  of  properties  such as  continuity and integrability.  The

convergence  of  series  of  functions  can  be  analyzed  similarly  to  sequences,  with  additional

considerations for uniform convergence and the use of tests like the Weierstrass M-Test. These

concepts  are  foundational  in  mathematical  analysis,  particularly  in  understanding  function

approximation, Fourier series, and analytic continuation in complex analysis, By grasping the

convergence  behaviors  of  sequences  and  series  of  functions,  students  can  analyze  complex

functions  more  effectively,  ensuring  accurate  approximations  and  deeper  insights  into  their

properties.
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5.8 Keywords:

 Sequences

 Series

 Convergence Tests

5.9 Self Assessment Questions:
1.  Explain  Dirichlet's  Test  for  the  convergence  of  infinite  series.  What  conditions  must  be

satisfied for a series to be applicable for Dirichlet's Test? Provide an example of a series where

Dirichlet's Test can be effectively applied.

2. Determine the convergence of the series  ∑
n=1

∞ cosn
n2

 using Dirichlet's Test. Provide a step-by-

step explanation of how Dirichlet's Test is applied in this case.

3. Explain Abel's Test for the uniform convergence of infinite series. What conditions must be

satisfied for a series to be applicable for Abel's Test? Provide an example of a series where

Abel's Test can be effectively applied.

4. Determine the uniform convergence of the series ∑
n=1

∞ sin nx
n2

  on the interval [0, π] using Abel's

Test. Provide a step-by-step explanation of how Abel's Test is applied in this case.

Compare and contrast Dirichlet's Test and Abel's Test for the uniform convergence of infinite

series.  Discuss  their  similarities,  differences,  and  situations  where  one  test  may  be  more

applicable than the other. Provide examples to illustrate your points.

5.10 Case Study:
A mathematician is studying the uniform convergence of Fourier series on a specific interval.

Fourier series represent periodic functions as a sum of sinusoidal functions and are widely used

in various fields, including signal processing, engineering, and physics. The mathematician aims

to determine whether certain Fourier series converge uniformly on their intervals of definition

using Abel's test and Dirichlet's test.
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Question: Consider the Fourier series f ( x )=∑
n=1

∞ sin nx
n2

defined on the interval [0,π]. The mathematician

wants to investigate the uniform convergence of this series using Abel's test and Dirichlet's test.

5.11 References:

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson.

 Trench, W. F. (2013). Introduction  to  Real  Analysis. United  Kingdom: Prentice

Hall/Pearson Education

UNIT - 6
Functions of Several Variables

Learning Objectives:

 Understand the functions of several variables

 Understand Linear transformations

Structure:
6.1 Overview of functions of several variables

6.2 Linear transformations

6.3 Summary

6.4 Keywords

6.5 Self-Assessment questions

6.6 Case Study

6.7 References
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6.1 Overview of functions of several variables:
Functions of several variables, also known as multivariable functions, are functions that depend

on more than one input variable. They play a crucial role in various branches of mathematics,

including calculus, differential equations, and geometry. Let's provide an overview of functions

of several variables.

Definition 6.1
A rule that gives each combination of values of the input variables x1, x2,..., x n a unique real

number is called a function of multiple variables, f(x1, x2,..., xn).

Key Concepts:
1. Domain: The set of all possible combinations of values of the input variables for which

the function is defined.

2. Range: The set of all possible output values of the function.

3. Graph: In three dimensions, the graph of a function of two variables is a surface in space,

while in higher dimensions, it's a hypersurface.

4. Level Sets: The level sets of a multivariable function are the sets of points where the

function takes on a constant value. They are crucial for visualizing and understanding the

behavior of the function.

5. Partial Derivatives: The partial derivatives of a multivariable function measure how the

function changes with respect to each input variable independently.

6. Gradient: The gradient of a function is a vector that points in the direction of the steepest

ascent of the function and whose magnitude represents the rate of change of the function

in that direction.

7. Extrema: Extrema of multivariable functions refer to maximum and minimum values of

the function within its domain.

6.2 Linear transformations:
Linear transformations are fundamental operations in linear algebra that map vectors from one

space  to  another  while  preserving  certain  properties.  Let's  explore  the  concept  of  linear

transformations in more detail.
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Definition 6.2
A linear transformation T from a vector space V to a vector space W is a function that satisfies

two properties:

1. Additivity: For any vectors u and v in V, T(u+v)=T(u)+T(v).

2. Scalar  Multiplication  Preservation: For  any  scalar  c and  any  vector  v in  V,

T(cv)=cT(v).

In  other  words,  a  linear  transformation  preserves  vector  addition  and  scalar

multiplication.

Properties:
1. Preservation of the Zero Vector: A linear transformation maps the zero vector in V to the

zero vector in W.

2. Preservation  of  Linear  Combinations:  A  linear  transformation  preserves  linear

combinations of vectors.

3. Matrix Representation: Every linear transformation T :Rn→Rm can be represented by an

m×n matrix A such that T(v)=Av for all v in Rn.

4. Kernel and Image: Linear transformations have associated kernel (null space) and image

(range) subspaces, which are crucial for understanding their properties.

Examples of linear transformations:

1. Identity Transformation:

The identity transformation  I :Rn→Rn is defined by:  I (x)=x  for any vector  x∈ Rn. This

transformation leaves all vectors unchanged.

2. Scaling Transformation:

A scaling transformation  S :Rn→Rn scales all vectors by a constant factor k:  S(x )=kx for

any vector x∈ Rn. For example, in R2 ;

((xy ))=(kxky)
3. Rotation Transformation:
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A rotation transformation R :R2→R2rotates vectors by a fixed angle θ around the origin. The

matrix representation of this transformation is: 

R ( x )=(cosθ −sinθ
sinθ cosθ )( xy )for any vector x=(xy)∈R2.

6.3 Summary:
Understanding functions of  several  variables  is  essential  for  studying multivariable  calculus,

optimization, and mathematical modeling in various scientific and engineering fields. Mastery of

concepts like partial derivatives, level curves, and higher-order derivatives provides a foundation

for more advanced topics and real-world applications.

6.4 Keywords:

 Introduction of Functions of Several Variables

 Linear transformations introduction

6.5 Self-Assessment questions:
1. Find the maximum and minimum values of the function f(x,y,z)=xy+yz+zx subject to the

constraintx2+ y2+z2=1.

2. Let T :R2→R2 be a linear transformation defined by T ( x )=[2 −1
3 4 ], where x=[ xy ].

a) Verify that T is a linear transformation.

b) Find the matrix representation of T.

c) Determine the image of the point (1,2) under T.

3.Let  T :R3→R3 be a linear transformation defined by  T ( x )=[ 1 2 0
−1 0 3
2 1 −1] xand let  S :R3→R3 be

another linear transformation defined by S(x )=[ 1 2 0
−1 0 3
2 1 −1]x .
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a) Find the matrix representation of the composition ST.

b) Determine whether ST is a linear transformation.

6.6 Case Study:
A  digital  imaging  company  specializes  in  enhancing  and  manipulating  images  for  various

purposes, such as photography, advertising, and design. One of the key techniques used by the

company is linear transformations, which allow for image scaling, rotation, translation, and other

transformations while preserving the integrity and quality of the image.

Question: The company receives images in various formats and resolutions, captured by 

different devices and cameras. These images may need adjustments or enhancements to meet the 

client's requirements.

6.7 References:

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson.

 Trench, W. F. (2013). Introduction  to  Real  Analysis. United  Kingdom: Prentice

Hall/Pearson Education
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UNIT - 7

Derivatives in Multivariable Calculus

Learning Objectives:

 Understand the Chain rule for multivariable functions

 Understand the Partial derivatives 

 Understand the directional derivatives

Structure:
7.1  Chain rule for multivariable functions

7.1 Partial derivatives and their properties

7.2 Summary

7.3 Keywords

7.4 Self-Assessment questions

7.5 Case Study

7.6 References
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7.1 Chain rule for multivariable functions:
The chain rule for multivariable functions is a fundamental concept in calculus that allows us to

find the derivative of compositions of functions. Let's explore the chain rule in the context of

functions of several variables.

Chain Rule for Multivariable Functions

Let  f :Rn .→R be a function of several variables and  g :Rm→Rn be another function. If  g is

differentiable at a point  a and  f is differentiable at  g(a), then the composition  f∘g :Rm→R is

differentiable at  a, and its derivative is given by the matrix product of the Jacobian of f at g(a)

and the Jacobian of g at a.

Mathematically, if a is a point in the domain of g, then the chain rule states:

D( f ∘g)(a)=Df (g(a))⋅Dg(a)
Where:

 Df(g(a)) is the Jacobian matrix of f evaluated at g(a).

 Dg(a) is the Jacobian matrix of g evaluated at a.

 “⋅” denotes the matrix multiplication.

Example:
Consider the functions:

f (x , y , z)=x2+ yz

7.2 Partial derivatives and their properties:
Partial derivatives are derivatives of functions of several variables with respect to one of those

variables, while keeping the other variables constant. Let's delve into partial derivatives and their

properties.

Definition:

Let  f (x1 , x2,…, xn) be a function of  n variables. The partial derivative of  f with respect to the

variable x iis denoted by 
∂ f
∂ x i

 and is defined as:
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∂ f
∂ x i

=lim
h→∞

f (x1 , x2 ,…,x i+h ,…, xn)− f (x1 , x2 ,… ,xn)
h

Properties:
1. Linearity: If f and g are functions of several variables and c is a constant, then:

∂( f +g)
∂ x i

= ∂ f
∂ x i

+ ∂ g
∂ xi

2. Product Rule: For two functions u(x) and v(x), the product rule states: 

∂(u . v )
∂x i

=u ∂v
∂ x i

+v ∂u
∂ xi

Example:

Consider the function f (x , y )=x2+ xy+v2.

∂ f
∂ x

=2 x+ y

∂ f
∂ y

=x+2 y

7.3 Summary:
Measure  how  functions  change  as  each  variable  changes,  foundational  for  understanding

multivariable  functions.  Provides  direction  and  rate  of  steepest  ascent.  Generalize  partial

derivatives  to  arbitrary  directions.  Extend  the  concept  of  linear  approximation  to  multiple

dimensions.  Essential  for  differentiating  composite  functions  involving  multiple  variables.

Techniques  like critical  points  and Lagrange multipliers are  crucial  for  finding maxima and

minima in multivariable contexts. Understanding these concepts is fundamental for applications

in  physics,  engineering,  economics,  and  beyond,  where  systems  often  depend  on  multiple

variables. 

7.4 Keywords:

 Partial Derivatives

 Multivariable variables
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 Chain Rule

7.5 Self-Assessment questions:
1. Suppose z=f(x,y), where x=g(t) and y=h(t). Derive the expression for dz/dt using the chain

rule.

2. Let w=f(x,y,z), where x=g(t,u), y=h(t,u), and z=k(t,u). Find the partial derivatives ∂w/∂tand

∂w/∂u using the chain rule.

3. Consider a function z=f(x, y) where xxx and y are functions of u and v, i.e., x=g(u, v) and

y=h(u, v). Derive the expressions for ∂z/∂u and ∂z/∂v using the chain rule.

4. Let z=f(x,y) where x=g(r, s) and y=h(r,s). If r=u2+v2 and s=arc tan ( v
u
), find ∂z/∂u and ∂z/∂v

5. Let u=f(x,y,z), v=g(x,y,z), and w=h(x,y,z), where x, y, and z are functions of t, i.e., x=x(t),

y=y(t), and z=z(t). Find the derivative d/dt (u + v+ w).

7.6 Case Study:
Climate models are  crucial  tools for understanding and predicting changes in the Earth's

climate.  These  models  often  rely  on  complex  mathematical  functions  that  describe  how

various climatic variables interact. For example, the temperature at a given location T(x, y, t)

depends on geographical coordinates (x, y) and time t. These variables, in turn, depend on

other factors such as altitude a, humidity h, and atmospheric pressure p, which themselves

can be functions of (x, y, t).

Question: A climate scientist is studying the temperature distribution in a region over time.

The temperature T is influenced by altitude a, humidity h, and atmospheric pressure p. These

factors are functions of the geographical coordinates (x, y) and time t. The relationships are

as follows:

 Altitude a=a(x, y)

 Humidity h=h(x, y, t)

 Atmospheric pressure p=p(x, y, t)
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 Temperature T=T(a, h, p)

The goal is to determine how the temperature T changes with respect to time and space using

the chain rule for multivariable functions.

Step-by-Step Analysis:
(a) Find temperature changes with time at a specific location.

(b) Find how temperature changes with respect to spatial coordinates (x,y).

7.7 References:

 Shifrin, T. (2015). Multivariable Mathematics: Linear Algebra, Multivariable Calculus,

and Manifolds. United Kingdom: Wiley.

 Lang, S. (2012). Calculus of Several Variables. Switzerland: Springer New York.
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UNIT-8
Advanced Techniques in Multivariable Calculus

Learning Objectives:

 Understand the contraction principle

 Understand the Inverse function theorem

 Understand the Implicit function theorem

Structure:
8.1 The contraction principle

8.2 Inverse function theorem

8.3 Implicit function theorem

8.4 Summary

8.5 Keywords

8.6 Self-Assessment questions

8.7 Case Study

8.8 References
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8.1 The contraction principle:
The contraction principle, also known as the Banach fixed-point theorem, is a fundamental result

in mathematics, particularly in the study of fixed-point theorems and metric spaces. Let's explore

the contraction principle.

The Contraction Principle:
Statement of the Theorem:
Let (X, d) be a complete metric space, and let T:X→X be a contraction mapping. This means

there exists a constant 0≤k<1 such that for all x,y∈X,

d (T (x ), T ( y))≤k .d (x , y ) .

Then:

1. T has a unique fixed point x¿∈ X ,i . e . ,T ( x¿ )=x¿ .

2. For any initial pointx0∈ , i . e .T ( x¿ )=x¿, the sequence defined by xn+1=T (xn) converges to the

fixed point x¿.

Example:
Consider the function f(x)=x/2 on the interval [0,1]. This function is a contraction mapping with

contraction constant k=1/2. By the contraction principle, f has a unique fixed point, which can be

found iteratively.

8.2 Inverse function theorem:
The inverse function theorem is a fundamental result in calculus that provides conditions under

which a function has an inverse function, and it describes the properties of the inverse function

near a point where it exists. Let's explore the inverse function theorem.

Inverse Function Theorem:

Statement: Let f :U ⊆ Rn→Rn be a continuously differentiable function defined on an open set

U in Rn, and let a be a point in U where the Jacobian determinant J f (a) is nonzero. Then, there

exists an open neighborhood V of a and an open neighbourhood Wof f(a) such that:

1. f is injective on V, i.e., f has a unique inverse function f−1:W→V.

2. The inverse function f−1 is continuously differentiable on W.

47



3. The Jacobian matrix  of  f−1at  f(a) is  the inverse of the Jacobian matrix  of  f at  a,  i.e.,

J f−1 (f (a ) )=[ J f (a)]−1

Example:

Consider the function f (x , y )=(ex cosy , ex siny). This function maps points in R2 to points on the

unit circle in R2. The Jacobian determinant J f (x , y )=e2x is nonzero everywhere, so the inverse

function theorem guarantees the existence of local inverses for f.

8.3 Implicit function theorem:
The Implicit Function Theorem is a fundamental result in calculus that describes the existence

and differentiability  of  implicit  functions  defined by equations.  Let's  delve  into  the Implicit

Function Theorem.

Implicit Function Theorem:
Statement: Let  F:Rn+m→Rm be a continuously differentiable function defined on an open set

U⊆Rn+m, and let (a,b) be a point in U such that F(a,b)=0 and the Jacobian matrix JF(a,b) has full

rank m. Then, there exist open sets U1⊆Rn containing a and U2⊆Rm containing b, and a unique

continuously differentiable function f:U1→U2 such that:

1. f(a)=b.

2. For all x in U1, F(x,f(x))=0.

Example:
Consider the equation x2+y2−1=0, which defines the unit circle in the plane. Let F(x,y)=x2+y2−1.

At any point (x,y) on the unit circle,  F(x,y)=0. The Implicit Function Theorem guarantees the

existence of a continuously differentiable function f such that F(x,f(x))=0, implicitly defining y in

terms of x on the unit circle.

Jacobian Matrix of the system:The Jacobian matrix of the system in 17 is defined as matrix of

the partials follows
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This matrix will be of rank m if its determinant is not zero.

8.4 Summary:
By mastering these advanced techniques in multivariable calculus, students will be equipped to

handle  complex  mathematical  models  and  problems  in  various  scientific  and  engineering

disciplines.  These  objectives  aim  to  build  a  deep  understanding  of  the  theory  and  provide

practical skills for applying multivariable calculus to real-world scenarios.

8.5 Keywords:

 The contraction principle

 Inverse function theorem

 Implicit function theorem

8.6 Self-Assessment questions:

Q1.  Prove  that  the  expression  x2−x y3+ y3=17is  an  implicit  function  of  y  in  terms  of  x  in  a

neighbourhood of (x, y) = (5, 2).

Q2.  Consider  the  equation  F (x , y )=x2+ y2−1=0.  Use  the  Implicit  Function  Theorem  to

determine if y can be locally expressed as a function of x near the point ( x , y )=( 1
√2

, 1
√2

). Find

the derivative dy/dx at this point if possible.

Q3. Given the function F (x , y , z )=x2+ y2+ z2−1=0, determine if the Implicit Function Theorem

can be used to locally express z as a function of x and y around the point (x,y,z)=(0,0,1). Verify

the conditions of the theorem and, if they are met, find the partial derivatives ∂z/∂x and ∂z/∂y at

this point.
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Q4.  Let F1(x , y , z )=x2+ y2+z−1=0 andF2 ( x , y , z )=x+ y2+z2−1=0. Use the Implicit Function

Theorem to determine if x and y can be locally expressed as functions of z near the point (x,y,z)

= (1, 0, 0). Check the necessary conditions and find the Jacobian matrix.

Q5.   Consider  the  nonlinear  system  given  by  F1(x , y , z )=ex+ y2+z−1=0 and

F2 ( x , y , z )=x+ ln ( y+z )−1=0. Use the Implicit Function Theorem to determine if y and z can be

locally expressed as functions of xxx near the point (x,y, z) = (0, 1, 0). Verify the conditions of

the theorem and, if applicable, find the Jacobian matrix of the partial derivatives.

8.7 Case Study:
In engineering, stress analysis is a crucial aspect of ensuring that structures can withstand applied

forces without failing. One important concept in this field is the relationship between stress,

strain, and material properties. For certain materials, the relationship between stress σ, strain ϵ,

and other factors like temperature T can be complex and described by implicit functions.

Question: An engineer is working on designing a beam that will be subjected to various loads

and temperatures. The relationship between stress σ, strain ϵ\epsilonϵ, and temperature T for the

material used in the beam can be described by the implicit function: F(σ,ϵ,T)=σ−E(ϵ+αT)=0

Where E is the Young's modulus of the material, and α is the coefficient of thermal expansion.

The goal is to determine if the stress σ can be locally expressed as a function of strain ϵ and

temperature T near a specific operating point and to find the partial derivatives of σ with respect

to ϵ and T.

8.8 References:

 Shifrin, T. (2005). Multivariable Mathematics: Linear Algebra, Multivariable Calculus,
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 Lang, S. (2012). Calculus of Several Variables. Switzerland: Springer New York.
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UNIT - 9
Extremum Problems with Constraints

Learning Objectives:

 Understand the Optimization problems with constraints

 Understand the Lagrange’s multiplier method

Structure:
9.1 The Optimization problems with constraints

9.2 Lagrange’s multiplier method 

9.3 Summary

9.4 Keywords

9.5 Self-Assessment questions

9.6 Case Study

9.7 References
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9.1 The Optimization problems with constraints:
Optimization problems with constraints, often referred to as constrained optimization problems,

involve finding the maximum or minimum value of a function subject to certain constraints.

Let's explore these types of problems.

Constrained Optimization Problems

Consider the general form of a constrained optimization problem:

Minimize (or Maximize): f(x1,x2,…,xn)

                       Subject to: gi(x1,x2,…,xn)≤0 for i=1,2,…,m     

hj(x1,x2,…,xn)=0 for j=1,2,…,p

where

 f(x1,x2,…,xn)is the objective function to be minimized or maximized.

 gi(x1,x2,…,xn) are inequality constraints.

 hj(x1,x2,…,xn) are equality constraints.

 x1,x2,…,xn are decision variables.

Example:
Consider the problem of maximizing the area of a rectangle with a fixed perimeter. Let x and y

be  the  length  and  width  of  the  rectangle,  respectively,  and  P be  the  fixed  perimeter.  The

objective function to be maximized is A=xy, subject to the constraint 2x+2y=P.

9.2 Lagrange’s multiplier method:
Lagrange's  multiplier method is a powerful technique used to solve constrained optimization

problems. Let's delve into this method.

Consider the constrained optimization problem:

Minimize (or Maximize): f(x1,x2,…,xn)

                       Subject to: gi(x1,x2,…,xn)≤0 for i=1,2,…,m     

where 

 f(x1,x2,…,xn) is the objective function to be minimized or maximized.

 gi(x1,x2,…,xn) are inequality constraints.
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Steps of Lagrange's Multiplier Method:
1. Form the Lagrangian: Define the Lagrangian function L as the objective function plus the

sum of Lagrange multipliers λi multiplied by each constraint:

L(x1,x2,…,xn, λ1, λ2,…,λm)=f(x1,x2,…,xn)+∑i=1
mλigi(x1,x2,…,xn)

2. Compute the Partial  Derivatives: Compute the partial derivatives of  L with respect to

each variable xi and each Lagrange multiplier λi.

3. Set Partial Derivatives to Zero: Set all partial derivatives equal to zero to find critical

points of L.

4. Solve the System of Equations: Solve the system of equations obtained in step 3 to find

the values of xi and λi.

5. Check for  Solutions:  Check the solutions obtained to  ensure they satisfy the original

constraints.

6. Evaluate Objective Function: Evaluate the objective function at the critical points to find

the maximum or minimum value.

Example:
Consider the problem of maximizing the function  f(x,y)=xy subject to the constraint  x2+y2=1.

Using Lagrange's multiplier method, we form the Lagrangian:

L(x, y, λ) = xy+ λ(x2+y2−1)

Then, we compute the partial derivatives and solve the system of equations to find the critical

points.

9.3 Summary:
Identify  feasible  region  and  evaluate  the  objective  function  at  the  vertices  (corners)  of  the

feasible  region.  Extremum  problems  with  constraints  are  fundamental  in  optimization.

Techniques  such  as  Lagrange  multipliers  allow  for  the  systematic  identification  of  optimal

solutions  under  given  constraints.  These  methods  have  broad  applications  in  science,

engineering, economics, and operational research.
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9.4 Keywords:

 Lagrange’s multiplier method

 Optimization problems with constraints

9.5Self-Assessment Question:

Q1. Find the maximum and minimum values  of  the  function  f ( x , y )=x2+ y2 subject  to  the

constraintg(x , y)=x+ y−1=0. Use the method of Lagrange multipliers.

Q2.  A  company  produces  two  products,  x  and  y,  with  a  profit  function  given  by

P(x , y)=20 x+30 y. The production is limited by the resources available, modeled by the

constraint  4x+6y=120.  Use  the  method  of  Lagrange  multipliers  to  find  the  optimal

production levels of xxx and y to maximize profit.

Q3.  Find the points on the ellipse x
2

4
+ y2

9
=1that are closest to the point (1,0). Use the method

of Lagrange multipliers to determine the closest points.

Q4.  Maximize the surface area of a rectangular box with a fixed volume V=1000 cubic units.

The  surface  area  S  of  the  box  is  given  by  S(x , y , z)=2xy+2 xz+2 yz,  and  the  volume

constraint  is  V (x , y , z)=xyz=1000.  Use the method of  Lagrange multipliers  to  find the

dimensions of the box that maximize the surface area.

Q5.  Find the minimum value of the function  f ( x , y , z )=x2+ y2+ z2 subject to the constraint

g(x , y , z)=x+ y+z−1=0. Use the method of Lagrange multipliers to find the point at which

the minimum value occurs.

9.5 Case Study:
A manufacturing company produces two products, Product A and Product B. The company

wants  to  maximize  its  profit  given  certain  resource  constraints.  The  profit  functions  and

constraints are as follows:

 Profit function: P(x, y)=40x+30y, where xxx is the number of units of Product A produced

and y is the number of units of Product B produced.

 Resource constraints:

54



 Labor constraint: 2x+y ≤ 100 (each unit of Product A requires 2 hours of labor, each unit of

Product B requires 1 hour of labor, and there are 100 hours available in total).

 Material constraint: x+2y≤ 80 (each unit of Product A requires 1 unit of material, each unit

of Product B requires 2 units of material, and there are 80 units of material available in

total).

Question: Determine the optimal production levels of Product A and Product B to maximize

profit using the method of Lagrange multipliers.

9.6 References:

 Ito, K., Kunisch, K. (2008). Lagrange Multiplier Approach to Variational Problems and

Applications. United  States: Society  for  Industrial  and Applied  Mathematics  (SIAM,

3600 Market Street, Floor 6, Philadelphia, PA 19104).

 Bertsekas, D. P. (2014). Constrained  Optimization  and  Lagrange  Multiplier

Methods. United States: Elsevier Science.
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UNIT - 10
Vector Calculus: Gradient, Divergence, and Curl

Learning Objectives:

 Understand the Vector Calculus

 Difference between the Gradient, Divergence, and Curl

Structure:
10.1  Definition and properties of gradient 

10.2  Divergence, and curl 

10.3  Applications in physics and engineering

10.4  Summary

10.5  Keywords

10.6  Self-Assessment questions

10.7  Case Study

10.8  References
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10.1Definition and properties of gradient:
Let's  explore  the  definitions  and  properties  of  gradient,  divergence,  and  curl,  which  are

fundamental concepts in vector calculus.

Gradient:

The gradient of a scalar function f(x,y,z), denoted by ∇f or grad(f), is a vector field defined as:

∇ f =( ∂ f
∂ x

, ∂ f
∂ y

, ∂ f
∂ z

)

Properties:
1.Direction of Steepest Increase:
The gradient points in the direction of the steepest increase of the function f. That is, if you move

in the direction of the gradient, the function will increase the fastest.

2.Magnitude:

The magnitude of the gradient vector ∇f represents the rate of change of f in the direction of the

steepest increase. It is given by the formula: 

|∇ f|=√( ∂ f
∂ x1

)
2

++( ∂ f
∂ x2

)
2

+…+( ∂ f
∂ xn

)
2

3.Level Curves:
The gradient is orthogonal (perpendicular) to the level curves of the function f. This means that

at any point on a level curve, the gradient is tangent to the curve.

4.Directional Derivative:
The directional derivative of f in the direction of a unit vector v is given by the dot product of the

gradient and v:
Dv f =∇ f . v

Wherev is a unit vector.

10.2 Divergence andcurl:

The divergence of a vector field  F=⟨Fx,Fy,Fz⟩, denoted by  ∇⋅F or div(F), is a scalar function

defined as:

∇ ⋅F=
∂Fx

∂x
+
∂F y

∂ y
+
∂ F z

∂ z

Properties:
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1. Divergence Theorem: The divergence theorem relates the divergence of a vector field to

the flux of the vector field across the boundary of a closed surface enclosing a region in

space.

2. Conservation of Flux: Positive divergence indicates a source, while negative divergence

indicates  a  sink.  Zero  divergence  implies  that  the  vector  field is  divergence-free  or

solenoidal, meaning that it has no sources or sinks within the region.

Curl:

The curl of a vector field  F=⟨Fx,  Fy,  Fz⟩, denoted by  ∇×F or ccurl(F), is another vector field

defined as:

∇ ⋅F=
∂F z

∂ z
−
∂ F y

∂ z
,
∂ Fx

∂ x
−
∂F z

∂ z
,
∂ F y

∂ y
−
∂ Fx

∂x

Properties:
1. Curl Theorem (Stokes' Theorem): The curl of a vector field relates the circulation of the

vector field around a closed curve to the flux of the curl across the surface bounded by the

curve.

2. Rotational Behavior: The curl measures the rotational behavior of the vector field. A non-

zero curlindicates that the vector field has rotational components.

10.3 Applications in physics and engineering:
The gradient, divergence, and curl are fundamental concepts in vector calculus that find wide-

ranging applications in physics and engineering. Let's explore their applications in these fields:

Gradient:
1. Potential Fields: In physics, gradient plays a crucial role in defining potential fields such

as gravitational and electric fields. For example, in electrostatics, the electric field  E is

the negative gradient of the electric potential V: E=−∇V.

2. Heat  Transfer:  In  engineering,  temperature  distribution in  materials  can be  described

using  the  temperature  gradient.  The  gradient  of  temperature  helps  in  analyzing  heat

conduction problems and designing thermal management systems.
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3. Fluid Flow: In fluid mechanics, the velocity field of a fluid is related to the pressure field

through the  gradient  of  pressure.  This  relationship is  described by the Navier-Stokes

equations, which govern fluid flow behaviour.

Divergence:
1. Fluid  Dynamics: In  fluid  mechanics,  divergence  measures  the  rate  of  expansion  or

compression of a fluid flow. It is essential for analyzing incompressible flow, such as the flow

of liquids, where the divergence of the velocity field is zero.

2. Electromagnetism: In electromagnetism, divergence helps in understanding the behavior of

electric  and  magnetic  fields.  For  example,  the  divergence  of  the  magnetic  field  is  zero

(∇⋅B=0), indicating that there are no magnetic monopoles.

10.4 Summary:
Points in the direction of the steepest ascent of a scalar function and has a magnitude equal to the

rate of increase. Measures the net outward flux of a vector field from a point, indicating sources

and sinks. Measures the rotation of a vector field around a point, indicating the field's tendency

to  swirl  around  that  point.  These  concepts  are  fundamental  in  vector  calculus  and  have

significant applications in physics, engineering, and other sciences, particularly in the study of

fluid dynamics, electromagnetism, and vector field analysis.

10.5 Keywords:

 Gradient

 Divergence

 Curl

10.6 Self-Assessment Questions:
Q1. Explain the concept of convergence and divergence of vector fields in the context of real

analysis.  Discuss  how the  divergence  theorem relates  the  behavior  of  vector  fields  to  the

properties of their sources and sinks.

Q2.  Explore the properties of divergence and curl operators in real analysis. How do these

operators  behave  under  differentiation  and  integration?  Provide  examples  illustrating  these

properties.
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Q3.  Discuss Stokes' theorem in the context of real analysis. Explain how it relates the curl of a

vector field to line integrals over closed curves and its significance in vector field analysis.

Q4.  Explore the application of divergence and curl in real analysis to electromagnetic theory.

How do these concepts help in understanding the behavior of electric  and magnetic  fields,

Maxwell's equations, and electromagnetic waves?

Q5.  Explain Green's theorem in the context of real analysis. Discuss how it relates the curl of a

vector  field  to  line  integrals  over  simple  closed  curves  in  the  plane.  Provide  examples

demonstrating the application of Green's theorem.

10.7Case Study:

If ∅ ( x , y , z )=3 x2 y− y3 z2, find ∇ ∅ (¿grad∅ ) at the point (1 ,−2 ,−1)

Prove that ∇× ( ∇× A )=−∇2 A+∇(∇× A ).

10.8 References:

 Schey, H. M. (2015). Div,  grad,  curl,  and  all  that:  an  informal  text  on  vector

calculus. United Kingdom: W.W. Norton.

 Dautray, R., Lions, J., Artola, M., Cessenat, M. (2020). Mathematical  Analysis  and

Numerical  Methods  for  Science  and  Technology:  Volume  3  Spectral  Theory  and

Applications. Germany: Springer Berlin Heidelberg.
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UNIT - 11 
Line and Surface Integrals

Learning Objectives:

 Study the use of vector-valued functions for parameterizing curves in space.

 Recognize the connection between a curve's parameterization and the line integral along

it.

 Vector line integrals of vector fields along curves should be calculated.

 Find the integrals of scalar fields over surfaces that are scalar.

Structure
11.1 Line integrals

11.2 Surface integrals

11.3 Green’s theorem and Stokes’ theorem

11.4 Summary

11.5  Keyword

11.6 Self Assessment

11.7  Case Study

11.8  References
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11.1  Line integrals:
Line integrals are a concept in vector calculus that measures the cumulative effect of a vector

field along a curve in space.  They're particularly useful in physics, engineering, and various

branches of mathematics.

Here's the gist: Suppose you have a curve in space, parameterized by a single variable, say t. This

curve could be a path of a particle moving through space, for instance. Then, if you have a vector

field defined in the same space, meaning at each point in space, there's a corresponding vector,

you can compute the line integral of this vector field along the curve.

Mathematically,  if  you  have  a  vector  field  F ( x , y , z ) and  a  curve  parametrized  by

r (t )=⟨ x (t) , y ( t) , z (t ) ⟩, the line integral of F along the curve C from a to b is given by:

∫
C
F .dr=∫

a

b

F (r ( t ) ) .r ' ( t )dt

Wherer ' ( t) is the derivative of the position vector with respect to t (i.e., the velocity vector), and

“⋅” denotes the dot product.

This integral represents the sum of the vector field along the curve, taking into account both the

magnitude of the field and the direction of the curve.

Line Integral of a Scalar Field:
A line integral of a scalar field along a curve is a concept closely related to the line integral of a

vector field, but instead of integrating a vector field along a curve, you integrate a scalar field

along a curve.

Let's  say  you  have  a  scalar  field  f (x , y , z) defined  in  space,  and  you  have  a  curve  C

parameterized by t as r (t )=⟨ x (t) , y ( t) , z (t) ⟩ . The line integral of f along C from a to b is given

by:

∫
C
f . ds=∫

a

b

f (r (t ) ).|r '|dt

Here, ds denotes the differential arc length along the curve, and |r '| represents the magnitude of

the derivative of the position vector with respect to t, which is essentially the speed of motion

along the curve.

Line Integral of a Vector Field:
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The line integral of a vector field along a curve is a fundamental concept in vector calculus. It's

used to measure the cumulative effect of the vector field along a given curve.

Suppose you have a vector field F (x , y , z ) defined in space and a curve C parameterized by a

single parameter t, given by. The line integral of  F along C from a to b is calculated as:

∫
C
F .dr=∫

a

b

F (r ( t ) ) .r ' ( t )dt

Here, r ' ( t) denotes the derivative of the position vector with respect to t (i.e., the tangent vector

to the curve), and “ .”denotes the dot product.

Geometrically,  this  integral represents the work done by the vector  field along the curve.  It

considers both the magnitude of the field and the direction of the curve. The result gives insight

into the net effect of the vector field as one move along the curve.

11.2 Surface integrals: 
Surface integrals are essential tools in multivariable calculus, used to calculate quantities over

surfaces in three-dimensional space. They're particularly important in physics, engineering, and

various areas of applied mathematics.

There are two main types of surface integrals:

Surface Integrals of Scalar Fields: These integrals calculate quantities related to scalar fields

defined over surfaces. Suppose you have a scalar field f (x , y , z) defined in space and a surface

Sparameterized by two parameters, say u and v, given by r (u , v)= ⟨ x (u , v ) , y (u , v ) , z (u , v ) ⟩.

The surface integral of f over S is calculated as:

∬
S
f dS=∬

D
f (x (u , v ) , y (u , v ) , z (u , v ))|∂ r∂u × ∂r

∂v|dudv
Here, dS represent the differential area element on the surface S, and D represents the parameter

domain of the surface parameterization. The term  |∂r∂u × ∂r
∂v | represents the magnitude of the
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cross product of the partial derivatives of the surface parameterization with respect to u and v,

which gives the differential area element in terms of u and v.

Surface Integrals of Vector Fields: These integrals calculate quantities related to vector fields

defined over surfaces. Suppose you have a vector field F ( x , y , z )defined in space and a surface S

as described above. The surface integral of F  over S is calculated as:

∬
S

FdS=∬
D

F (r (u , v ) ) .( ∂r∂u ×
∂r
∂v

)dudv

Here, dS represents the differential vector area element on the surface S, and the rest of the terms

are similar to those in the scalar case.

11.3Green’s theorem and Stokes’ theorem:
Green's Theorem:
Green's theorem relates a line integral around a simple closed curve to a double integral over the

region bounded by the curve. It is often stated in terms of a two-dimensional vector field.

Statement: Let C be a positively oriented simple closed curve in the plane, and let D be the

region bounded by C.  If  P(x , y)and  Q(x , y)have continuous partial  derivatives on an open

region containing D, then

∮
C

(Pdx+Qdy )=∬
D

( ∂Q
∂x

−∂P
∂ y

)dA

Stokes' Theorem:
Stokes' theorem relates a line integral of a vector field around a closed curve to a surface integral

of the curl of the vector field over a surface bounded by the curve. It's a generalization of Green's

theorem and applies in three dimensions.

Statement: Let S be an oriented piecewise-smooth surface in space, C be the boundary curve of

S  with  positive  orientation,  and  F=⟨ P ,Q , R ⟩ be  a  vector  field  with  continuous  partial

derivatives defined on a region containing S. Then,

∮
C

F ⋅ dr=∬
S

(∇× F ) . dS
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Comparison and Relationship:
1. Dimensionality:
 Green's Theorem is specific to two dimensions and relates a line integral around a closed

curve to a double integral over the region it encloses.

 Stokes'  Theorem is  more  general  and  applies  to  three  dimensions,  relating  a  surface

integral over a surface to a line integral around its boundary.

2. Formulation:
 Green's Theorem deals with scalar fields and their partial derivatives.

 Stokes' Theorem deals with vector fields and their curl.

3. Special Case:
 Green's Theorem can be considered a special case of Stokes' Theorem when applied to a

flat surface in the plane.

11.4 Summary:

 Scalar  or  vector  fields  can  be  integrated  along curves  in  space  using  mathematical

techniques called line integrals. They have numerous uses in mathematics, engineering,

and physics. There are two types of line integrals: vector line integrals and scalar line

integrals.

 Mathematical tools called surface integrals are used to integrate vector or scalar fields

over surfaces in space. In mathematics, engineering, and physics, they are useful. There

are two types of surface integrals: vector surface integrals and scalar surface integrals.

11.5 Keywords:

 Surface integrals

 Green's Theorem

 Stokes' Theorem

 Surface Integral

 Line Integral
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11.6Self-Assessment Questions:

Q1.  Given the  vector  field  F=( y2 , x2),  use  Green's  Theorem to  evaluate  the  line  integral

∮
C

F .drwhere C is the positively oriented boundary of the region bounded by x2+ y2=1.

Q2.  Verify Green's Theorem for the vector field F=(ex , e y ) and the region D bounded by the

curve y=x2and y=1.

Q3.  Given a vector field F=(z , y , x ), compute the surface integral ∬
S

(∇×F ) . dSwhere S is the

surface of the unit sphere x2+ y2+z2=1.

Q4.  Using Stokes' Theorem, evaluate the line integral ∮
∂S

F .drfor F=( y ,−x , z) and the surface

S which is the upper hemisphere of the spherex2+ y2+z2=1.

11.7Case Study:
Fluid  transport  in  industrial  applications  is  the  area  of  expertise  for  company  XYZ,  which

specializes in constructing effective pipeline systems. Engineers must examine the fluid flow

through pipes and around different components in order to optimize the design and performance

of these systems. When modeling and evaluating fluid flow in such systems, line and surface

integrals are essential.

Question: To simulate and analyze fluid flow in a pipeline system using line and surface 

integrals in order to ensure effective operation and reduce energy usage.

11.8 References:

 Royden, H., Fitzpatrick, P. (2018). Real Analysis. United Kingdom: Pearson.

 Trench, W. F. (2013). Introduction  to  Real  Analysis. United  Kingdom: Prentice

Hall/Pearson Education.
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UNIT - 12 
Metric Spaces

Learning Objectives:

 Understand connections between metric spaces and other areas of mathematics

 Explore  applications  in  fields  like  functional  analysis,  dynamical  systems,  and data

analysis

 Study metric-preserving mappings such as isometrics and homeomorphisms

Structure:
12.1 Introduction to Metric Spaces

12.2 Basic Concepts in Metric Spaces

12.3 Compact Sets in a Metric Space

12.4Summary

12.5Keywords

12.6Self Assessment

12.7Case Study

12.8References
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12.1 Introduction to Metric Spaces:
Metric spaces are fundamental objects of study in analysis and topology, providing a framework

for discussing concepts such as distance, convergence, and continuity in a general setting. A

metric space generalizes the notion of Euclidean space, allowing us to extend these concepts to

more abstract spaces.

Definition of a Metric Space:
A  metric space is a set  X equipped with a function  d :X ×X→R called a  metric or  distance

function, which satisfies the following properties for all x , y , z∈ X :

1. Non-negativity: d (x , y)≥0 and d (x , y)=0 if and only if x= y .

2. Symmetry:d (x , y)=d ( y , x ).

3. Triangle Inequality: d (x , z )≤d (x , y)+d ( y , z) .

Examples of Metric Spaces:

1. Euclidean Space: The set Rn with the Euclidean distance 2d (x , y )=∑
i=1

n

(x i− y i )
2 .

2. Discrete Metric: Any set X with d (x , y)=1 if x≠ y and d (x , y)=0 if x= y .

3. Taxicab Metric (Manhattan Distance): The set Rn with d (x , y)=∑
i=1

n

∣ xi− y i∣ .

4. Sup Metric (Chebyshev Distance): The set Rn with d (x , y)=max1≤i ≤n ∣ x i− y i∣ .

5. Function  Spaces:  The  set  of  continuous  functions  on  [a,b],  with  metrics  such  as

d ( f , g)=∫
a

b

∣ f (t )−g(t )∣d t .

12.2 Basic Concepts in Metric Spaces:
1. Open and Closed Sets:

 An open ballcentered at x∈ X  with radius r>0 is the set B(x ,r )={y∈ X ∣d (x , y)<r }.

 A set U⊆X is open if for every x∈U, there exists r>0 such that B(x,r)⊆U.

 A set C⊆X is closed if its complement X∖C is open.

2. Convergence:

68



 A sequence (xn) in Xconverges to x∈ X  if for every ϵ>0, there exists N N such that d(xn∈

,x)<ϵ for all n≥N.

3. Continuity:
 A function f:X→Y between metric spaces  (X,dX) and (Y,dY) is continuous at x∈ X  if for

every ϵ>0, there exists δ>0 such that dY(f(x),f(y))<ϵ whenever dX(x,y)<δ.

4. Completeness:
 A metric space X is complete if every Cauchy sequence in X converges to a point X.

 A sequence xnis Cauchy if for every ϵ>0, there exists n∈N such that d (xn , xm)<∈ for all

n ,m≥ N .

5. Compactness:
 A set K ⊆ X is compact if every open cover of K has a finite subcover.

 In metric spaces, a set is compact if and only if it is closed and bounded.

6. Connectedness:
 A space X is connected if it cannot be divided into two disjoint non-empty open sets.

 A space X is path-connected if any two points can be connected by a continuous path.

12.3Compact Sets in a Metric Space:
In  the  study  of  metric  spaces,  compact  sets  hold  significant  importance  due  to  their  useful

properties  and  various  applications.  This  section  explores  the  definition,  properties,  and

implications of compact sets in metric spaces.

Definition of Compact Sets:
A subset K of a metric space (X,d) is said to be compact if every open cover of K has a finite

subcover.  Formally,  K is  compact  if  for  every  collection  of  open  sets  {U i } , i∈ I  such  that

⊆⋃i∈ IU i, there exists a finite subcollection{U i1 ,U i2,…. ,U ¿} such that K ⊆⋃i∈ IU ij.

Examples and Non-examples:

1. Example: In the metric space (R,d) with the standard metric d(x,y)=∣x−y∣, the closed interval

[a,b] is compact. This follows from the Heine-Borel Theorem, which states that in Rn, a subset

is compact if and only if it is closed and bounded.
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2. Non-example:  The  open  interval  (a,b)  in  R  is  not  compact.  Consider  the  open  cover

{(a,a+1/n)}n∈N∪{(a+1/n,b)}n∈N. This cover has no finite subcover that can cover (a,b).

Properties of Compact Sets:
Compact sets exhibit several important properties that are useful in analysis and topology:

1. Heine-Borel Theorem: In Rn, a subset is compact if and only if it is closed and bounded.

This  theorem  is  crucial  because  it  provides  a  practical  criterion  for  checking

compactness in Euclidean spaces.

2. Sequential  Compactness: In  a  metric  space,  a  set  is  compact  if  and  only  if  it  is

sequentially  compact.  That  is,  every  sequence  in  the  set  has  a  subsequence  that

converges to a point within the set.

Continues Functions on Metric Spaces:
In the context of metric spaces, the concept of continuity plays a crucial role in analysis and

topology.  This  section  delves  into  the  definition,  properties,  and  implications  of  continuous

functions on metric spaces.

Definition of Continuous Functions:

A function f :(X ,d X)→(Y ,dY ) between two metric spaces is said to be continuous at a point

x∈ X  if for every ϵ>0, there exists a δ>0 such that for all x′∈X,

d X (x , x ' )<δ⟹d Y ( f (x) , f (x ' ))<¿ϵ.

The function f is continuous on X if it is continuous at every point x∈X.

Equivalent Definitions of Continuity:
There are several equivalent ways to define continuity in metric spaces:

1. Sequential Continuity: A function f:X→Y is continuous if and only if for every sequence {xn}

in X that converges to x∈X, the sequence {f(xn)} converges to f(x) in Y.

2. Open Set Definition: A function  f:X→Y is continuous if and only if the preimage of every

open set in Y is an open set in X. That is, for every open set V⊆Y, the set f−1(V)={x∈X∣f(x)∈V}

is open in X.
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3. Closed Set Definition: A function f:X→Y is continuous if and only if the preimage of every

closed  set  in  Y is  a  closed  set  in  X.  That  is,  for  every  closed  set  C⊆Y,  the  set

f−1(C)={x∈X∣f(x)∈C} is closed in X.

Properties of Continuous Functions:
Continuous functions between metric spaces have several important properties:

1. Preservation of Compactness: If f : X→Y is continuous and K ⊆ Xis compact, then f (K )⊆Y

is compact.

2.  Preservation  of  Connectedness:  If  f : X→Y is  continuous  and  C⊆ X is  connected,  then

f (C)⊆Y  is connected.

3. Uniform Continuioty: A function f : X→Y is continuous if for every ∈>0 , there exist a δ>0

such that for all x , x '∈ Xand C⊆ X is connected, then f (C)⊆Y  is connected.

d x( x , x ')<δ⟹d y( f (x ) , f (x '))<ϵ .

Uniform continuity is a stronger condition than continuity and does not depend on the point x.

Examples and Non-examples:
1. Example: The  function  f:R→R  defined  by  f(x)=x2 is  continuous.  Given  ϵ>0,  for

δ=min(1,ϵ/(2∣x∣+1)), we have ∣x−x′∣<δ implies ∣x2−x′2∣=∣x−x′∣∣x+x′∣<ϵ.

2. Non-example: The  function  f:Q→R  defined  by  f(x)=sin(1/x)  for  x≠0  and  f(0)=0  is  not

continuous at x=0. No matter how small δ is chosen, there exist rational x′ close to 0 such that

sin(1/x′) is not close to 0.

12.4 Summary:

 When two points are separated in a metric space, their combined distances to a third 

point are always less than or equal to that distance.

 The region where continuous functions with supremum metric exist

 The characteristics of a set's elements determine whether it is open, closed, or neither.

 If there is no way to split a metric space into two disjoint nonempty open sets, then the 

space is linked.

12.5  Keywords:
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 Metric space

 Supremum

 Continuous Functions

 Convergence

12.6 Self Assessment Question:
1. Define the triangle inequality in the context of metric spaces.

2. What is the difference between an open and closed set in a metric space?

3. What does it mean for a sequence to converge in a metric space?

4. Define the terms completeness and compactness in metric spaces.

5. What is an isometry between metric spaces?

6. Explain the concept of continuity in the context of metric spaces.

12.7 Case Study:
Autonomous vehicle navigation systems are being developed by company XYZ. To efficiently

plan  routes  for  the  cars,  these  navigation  systems  need  to  precisely  compute  the  distances

between different spots on a map. The mathematical structure used to model these distances is

given by metric spaces.

Question: In order to ensure safe and effective navigation for autonomous cars, a navigation

system that makes use of metric spaces to precisely calculate distances between points on a map

must be developed.

12.8 References:
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